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T.4. Rahmatulin : A theory of double velocity for the beundary

layer in a2 homogeneous liquid with two components.

Py the work of Prandtl and his school the theory of boundary layers
has become one ol the universal methods in the mechanics of the
continua during the last decades. This theory, however, to-day is
a.olied for solving several gquestions which are not directly
connected with the problem of motion of viscous fluids.

In the SSSE the boundary layer theory has been applied during the

last time for investisations of the following kind :

1) Calculation of high-powered, nonpunctiform explosions

(G.3. Cernij).

2) Calculation of instationary filter processes (r.Ja. Koéin,

4. Barenblat).

3) Calculation of instationary heat transfer for a heat-transfer

coerficient depending on the temperature (Ju.lls Dem' janov).

Tha ainm of this report is to call the researcher's attention

still to another field of application of the boundary layer theory.
Tere I nainly think of the epplication of the boundary layer theory
to the so-called "double-velocity hydro- and aerodynamics"
according to Landau's terminology. In order to clear the problem

I want to give a survey on some concrzte tasks of double-velocity
hydre- and aerodynamics which were forrmlated corresponding to the

boundary layer problems :

1) The flow of a homogereous fluid over a2 porous surfzace. In this
case the task can be formulated in such a way that = part of the

ideal fluid with the mean density 94 and the speed V1 flows
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“De
through the surface, while another part with the mean density < o
and the speed VE flows along. If it is put R = €q + g€, &as real

density, then the boundary layer conditions are evidently :

(1.1) KV,, =&

(1.2) V2n =0

furthermore for x> + y2 + z° it holds :

— 9
(1.3) Vy = 7, 3 7,

Although such a double-ve'ocity state is everywhere theoretically
possible, it really occurs in that range only which lies directly

on the porous wall. For ideal or viscous fluids the boundary layer
near the wall must be investigated. This is, however, not the classi-
cal boundary layer problem for which the flow is given in the layer,
but a case in which the boundary layer and the external flow mutually
irifluence each other - similar to the case of high supersonic veloeci-

ties. Thereby the flow around a porous plate in supersonic must be

solved as the first task.

2) The problem of porous cooling. In its character this problem does not
differ from the first one; only the condition (1.41) nust be repliaced

by a corresponding other one.

3) The problem of the boundary-layer control. After the things mentioned

above it is not necessary to explain this in detail.

4) Furthermore the double-velocity hydrodynazamies is of inmportance for the
motion of sueh liquids and gases which are saturated with macroscopic
dust particles. Here tle question is essentially a generalization of

the filter theory.

The last case shall be discussed sonme-hat more detailed.
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The deduction of the differential egquations for the boundary layer
in a liguid with double velocities :

{ think that we can consider with good reason liquids and gases
saturated with macroscopic dust particles as a mixture cf several
continuocus media. (#ootnote : Prof. Voronec, Belgrad called my
attention to the possibility to consider the mentioned media as
continuous. This is most suitable also in the sense of a verdict

of Zukovskij : "Mechanics is the art to set up integrable differentid
equations".)

It is evident that the tension and deformation relations are valid
for each of the mediz taking part in the motion. (Footnote: see

1.4 . Nahmatulin : "Foundations of gas dynamics of mutually penetrat-
ing motions of compressible media", Prilad.lat.llech.20, 1956.

A summary of the results of this paper was published in the reports

of the Congress for Theoretical and Applied llechanics in Bruscels.

It holds : .
L‘)u| . —
O ix =P + 2/“,1 -~ - -,:/ui div Vi
correspondingly = . and &,
(2.1) : e ¥ 12
gu v,
gy Ty e =)
1Xy 1 ay }jx
. 1 - . ":
correspondingly "iyz ana ixz .

Under the penetration of twe nmedia the index 1 zruns {rom

.

1 +to 2. Je introduce the expressions :

@?
. f. o= ==
’ 2 §2w

where §, and ?2 are the mean densities and ¢,, and Y o

_ 1
1 1w
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the real ones o1 the two mediz.
The Following equations of =otion are oblained with the aid of these

exXxpressions :

du, B Sy -
et = - F, <R, 4 £, 4 (0 2 - % div v, )
Lot dx  dx 2 x
Qui E)Vi
g (=2 e 2k E(u, - ouyg)
dy + o1 3:\[ dx
(2.2) (correspoudingly also an ejuation with Vi)

These eguations contain the following unknowns :

1f the denrnsities §1 and ¢, are assumed to be constant in the

equations of motion so that the condition f1 + f2

then six equations with five unknowns remain over. Therefore the

= 1 1is satisfied,

mean densities Q4 and ¢, are not allowed to be assumed a2s constant
in a double-velocity fluid, each couponent of which is incompressible.
Nevertheless this assumption for the motions in the boundary layer

does not lead to a redundancy in deternination of the .roblem, since

in this case two eaquations drop out. Namely, if it is put ®4 = const
and $, = const and, if it is estimated for the motions in the

b.undary layer, then it remains :
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‘\2
du1 . AE o u1 .
531 " =—I1 _‘Y+f1/‘41-—é—;§+1{(u2—u1)
[V,
e
~ du — Aot ~ T, T -
5 2 = -1, ¢ + lzﬂe i + ;{(u,i uz)
dt ¥x oy
(2.3)
“u IV
1+_ 1 _ g
Ix s
S, 5v?
__; + i - = O .
X '

fnus one obtains four equations for four unknowns.
I the pressure gradient vanishes, then the integral relations of

ve.{arman can be applied and one obtains according to Yohlhausen :

Uy = U for C“‘g ¥V <y

1 ="
. .3 -
(2.4)
ae .
2 ,‘ 3 - - -2
‘—"‘dx = :-' + 3262(5_6)\ + )L ) with )L = - p .
2
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1t can be shown that for o, it always holds « 5« .4

If x is eliminated f{romn the eguatious £2.4), then it follows :

d2 4\2/-:2+ 152@2(5 - 6l+)£3 )

(205) - . N .
d .y iyl g = Bylog = np)

The isoclinics of this egquation cre

L, =i, with —£ =201,
Ca 1
i‘1 d\:’r\
Gy = g = -—— = T(ry) with —~E =00 .
3,5 ds
171 1

Joure 1 shows a picture of !
the isoclines. From this it 2
can be seen that the curve

= H2(51) lies below &
straight line. &4 detailed cal-
culation shows that 12 very

quickly tends to and

;
hoth tend to a wvalue 5 which

corresponds to the boundary-

layer thickness o¢f a liquid J

77

with the density C,1 + Y5 o

If a pressure gradient exists, then u, and U, and consequently
also 1 and 52 are different from each other in every arbitrary
roint. Therefore a double-velocity theory in this case surely gives
results which differ from the corresponding resulits in & one-
comnonent medium,

Approved For Release 2009/07/31 : CIA-RDP80T00246A003500230002-6



Approved For Release 2009/07/31 : CIA-RDP80T00246A003500230002-6

Aefie Nikol'skij : On some exact potential flows with separation

and their treatment from the aspect of boundary-layer theory.

In his former peper on "The origin of vortices in ideal fluids"
Ludwig Prandtl directed to the possibility and sultability of
investigating the origin and further development of spiral sur-
faces of discontinuity on shelves, particularly the similar flows
of this kind.

Investigations of this form of motion which I shall denote &s
"second form of motion", have become particularly necessary during
the last time, since the forces acting on thin wings of small
aspect ratio for an afflux in fluids or gases under nonvanishing
angle of incidence are mainly determined by the second form of
motion. Furthermore the flow around obstacles by impaset waves even
depends on the second form of motion.

If the body with borders or edges which is assumed to be two-
dimensional rests in the moment t = O and moves for +tx 0
according to the law v = vo(t), then the second form of motion

develops on the edges for

t“% v (%) dt

0

O~ __ . ¢t

Here 1L 1s a 1length which is characteristic for the body. The
flow ¢of the second form of motion has aicomplex potential, the

principal term of which is in the x,y - coordinate system

W=vg+iy =¢ t-n vo(t) 2

Here is

N =
[T - O
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with the edge angle & ¢ 1is a nondimensional constant and

0'
for z it holds : 2 =x + 1],
We consider the complex initisl potential of & continuous flow

around an infinite edge of the general form :
Wy = f1(t) = + £,5(t) 2?0,

If it is in particular

W

= x.t8z2 . kzt[2m(1-n)-n} /(2-n)zgn

15 %

thenthe flow developing for t> 0 1is similar to the second form
of motion. The general circulation F1 of the vortex varies

according to the law
~ 4 2M4n
Fy~t

Here I want to consider the special case of a degenerated flow
which I mentioned, in my report at the 9-th International Congress
for Theoretical and Applied Mechanies, but which I did not analyze
in detail.

If 2m+n =0 , then F1 does not depend on t . For 2m + n - O
the vortex spiral contracts tc a point. Now for this limit case

a simple, exact solution of the problem can be found, if for
m=-n/2 a discreet vortex is assumed and if it is required
that the velocity on the apex of the edge remains finite, If
furthermore absence of exterior forces in the vortex point is

assumed, then we have :

1'1 = k11/(2-n) R1(n,B) d\\—'i? H 91 = 91(n,ﬂ)

My = k11/(2'n) cos(n,B) .
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Here
k2(2'n)/(1'n)
B = K

1

is a nondimensional parameter.
For the case of a semiinfinite plate it holds :
= -1/4 -1/2 z .

If one considers the motion in the plane of the nondimensional

variables

€ = k11/(n—2) 4=1/2 4

14

7 = k11/(n-2) £=1/2 v

then the picture point of the considered particle of the X,y=-plane
moves in the g, ¢-plane on the track curve of a similar motion. The
whole 5, 7-plane is uniquely covered with these track curves. For
k2 = 0 these trajectories have the form shown in the figure. Each
track curve terminates in the point zero and approaches this point
with increasing time alonz a spiral. There exists a track curve 3 ’
starting form the edge itself and winding up to the vortex point.,
For 2m+n — O this track blurs to a spiral vortex form.

If 8 + 0 (and especially if B8 — @ ), then the lateral afflux

blows away that region in which the second form of motion developed.

This region concentrates itself in the 5, m-plane around a certain

point of the plate which does not coincide with its edge. The

tracks of the similar motion then have the form shown in the figure.

The separation of flow does not take place in the point

A of the plate, The separation point C 1]/25)
Approved For Release 2009/07/31 : CIA-RDP80T00246ﬁ003500230002-6 [



Approved For Release 2009/07/31 : CIA-RDP80T00246A003500230002-6

-

from the body lies on the upper side of the plate. There are some
values B,.,4 of B8, so that for B8>8,.,4 the separation point

removes from the point A .,
It is suitable to extend the considered l1imit solution to the case

of a viscous fluid. In the equations

[AV]
N

u

o)
Q)
=

%,y

=)
3t 3

+ Vv

S
S

<l
W
+
k2
L
=
+

D

w
Q
]
Q)

e

the kinematic viscosity p has the dimension of a circulation,

for the dimensional relations :

2 - 2-n ] i
wl=% [M] =t 07 =[x

are valid. Therefore s corresponding set up can be made for the
flow of viscous fluids as for the flow of ideal fluids. lere it
appears that the well-known solution becomes similar for the dis-
sipation of a discreet vortex with the circulation ;= in the

viscous fluid because of the equality of the dimensions [/ ] =[] .

With the nondimensional magnitudes

g__: k11/(n-2) t-1/2 x
q = k11/(n--2) t'1/2 v
u( 2 Q’\g = k11/'(n-2) ‘t1/2 1
V( ‘E’, 42,9) = k11/(n-2) t1/2 v

2/(n-2
p o=k /(72 4 2

¢ -1{-27-(—1)11_—27 = const
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the equation of motion takes the following form :

- ~ f‘2 2
1 1 , U 1 v iy ' U v
'2‘U+(U"‘2§)'§"€+(V‘é"& %—;:-—g—gzé(ﬁ—g—:-&-ﬁ—g—z)
U, 37 = 0 .
o")a 9%

For smaller values of § the solution of the problem leads to the
calculation of the boundary layer, on the outer surface of which the
boundary conditbns must be substituted, which result from the
corresponding solution for the ideal fluild.

In the case of the plate the problem is elear : Here the boundary
layer consists of a layer lying against the plate and of the free
layer which is formed as a result of the flow off of the boundary
layer from the plate.

In the viscous fluid the discreet vortices are replaced by a
continuous vortex distribution, in the center of which the flow

is approximatively equal to the flow obtained under dissipation of
a single vortex; here difficulties arise in the investigation of
the flow around an edge with 8 <7 as well as for the flow around
a plate with B 5 B4 » since in these two cases the velocity of
the fluid particles flowing away from the body becomes equal to
zero in the branch point of the flow.

Approved For Release 2009/07/31 : CIA-RDP80T00246A003500230002-6



